Inner Msphere overview

Energy input

Wave modes

Resonance

Techniques

ULF waves in the inner magnetosphere: an overview

D. Constantinescu C. Bunescu

Institute for Space Sciences, Bucharest

1 Energy input

- 2 Wave modes and instabilities
- 3 Resonance
- 4 Multi-point techniques

ULFMAG kickoff meeting, Graz, March 2014

Inner Msphere overview

Energy input

- Wave modes
- Resonance
- Techniques

Energy input

• impulsive broad band

solar wind

- local near noon
- global resonant oscilations
- · periodic variation
 - upstream waves entering the magnetosphere
 - global forced oscillations
- · velocity shear
 - local Kelvin-Helmholtz waves at magnetopause flanks
 - standing surface waves
- tailward activity (substorms)
 - bursty bulk flows \rightarrow affect mainly the PSBL
 - $\bullet \ \ dipolarization \rightarrow global$
- 3 plasma convection
 - e.g. the westward drift

Inner Msphere overview

Energy input

Wave modes

Resonance

Techniques

Instabilities and wave modes

There are many ways in wich the plasma becomes unstable Each condition excites different wave modes

- anisotropy from compression / orthogonal heating
 - mirror mode
 - ion cyclotron
 - wistler
- ion beams
 - L and R mode
 - magnetosonic
- · velocity shear
 - Kelvin-Helmholtz
- mode coupling

e.g. during substorms

at the magnetopause

e.g. fast - Alfvén

Inner Msphere overview

Energy input

Wave modes

Resonance

Techniques

Discrete frequencies

Wave length comparable with the resonance domain

guided waves

- Alfvén \rightarrow FLR	1D
- Ion cyclotron \rightarrow FLR?	1D
- MP surface waves \rightarrow KS	2D

Resonant modes

3D

- MP surface waves \rightarrow KS -
- unguided waves
 - fast mode \rightarrow cavity

Inner Msphere overview

Energy input

Wave modes

Resonance

Techniques

In essence timing / phase differencing timing (time domain) time lag from cross correlation - can provide phase speed even for small λ wave telescope (frq domain) - assumes plane wave front wave vector source locator (frg domain)

Multi-point techniques

(frg domain)

- assumes spherical wave front
- wave vector and distance to the source
- FLR detector
 - applied on ground arrays