Programme for Research-Development-Innovation on Space Technology and Advanced Research – STAR

Cluster Flux Gate Magnetometer Daily Calibration TUNED

(19.11.2012 - 18.11.2015)

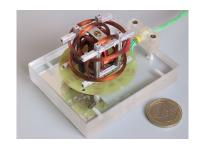
D. Constantinescu dragos@spacescience.ro

Institute for Space Sciences - INFLPR

Romanian Space Week, 29 Iune - 1 July 2016, Bucharest, Romania

Project Information: Short Description

The task of the project is to perform the daily in-flight calibration for the Flux Gate Magnetometer (FGM) instruments onboard the four ESA Cluster satellites. The project takes advantage of the calibrated data to investigate non-stationary processes at the Earth's bowshock.

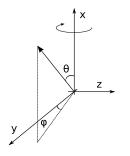

Cluster Spacecraft

- ► first ESA multi-spacecraft mission (launched in August 2000)
- mission extended to Dec 31 2018
- ▶ 11 field and particle instruments on each spacecraft
- multi-point measurements require careful calibration

FGM instruments \rightarrow

Project Information: Short Description - Instruments

- ► (inboard + outboard)×4
- ► very stable during the mission
- ► daily calibration is essential
- uses ranges (field magnitude)

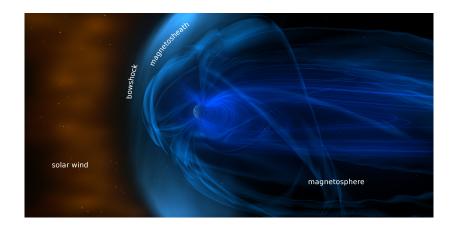


range	$B_{max}\left(nT\right)$	resolution (nT)	
2	64	1/128	
3	256	1/32	
4	1024	1/8	
5	4096	1/2	since 2006
6	16384	2	since 2008
7	65536	8	since 2009

Project Information: Short Description - Calibration

$$\begin{bmatrix} B_x' \\ B_y' \\ B_z' \end{bmatrix} = \mathcal{M} \cdot \begin{bmatrix} B_x \\ B_y \\ B_z \end{bmatrix} + \begin{bmatrix} O_x \\ O_y \\ O_z \end{bmatrix}$$

$$\mathcal{M} = \begin{bmatrix} G_x \sin \theta_x \cos \varphi_x & G_x \sin \theta_x \sin \varphi_x & G_x \cos \theta_x \\ G_y \sin \theta_y \cos \varphi_y & G_y \sin \theta_y \sin \varphi_y & G_y \cos \theta_y \\ G_z \sin \theta_z \cos \varphi_z & G_z \sin \theta_z \sin \varphi_z & G_z \cos \theta_z \end{bmatrix}$$


12 independent parameters for **each** range

- ▶ 3 elevation angles θ_i
- ▶ 3 azimuth angles φ_i
- ightharpoonup 3 gains G_i
- ► 3 offsets *O_i*

in total: $4 \times 2 \times 6 \times 12 = 576$ per day

Project Information: Short Description - Bowshock

- ► fast supermagnetosonic shock
- ▶ the cross shock potential accelerates and scatters particles
- essential to the solar wind magnetosphere interaction

Project Information: Objectives

- ► In-flight calibration for the Cluster FGM
 - ▶ Develop a software package for automatic calibration
 - ▶ Perform the FGM daily calibration
 - Archive the calibration parameters
- ► Study of the non-stationary processes at the bowshock
 - ► Theoretical investigation of high Mach number shocks
 - ► Numerical modelling of the electron dynamics
 - ► Comparison results with Cluster measurements

Implementation Status: All objectives fulfilled

► Calibration package:

► design: Finalised (2012)

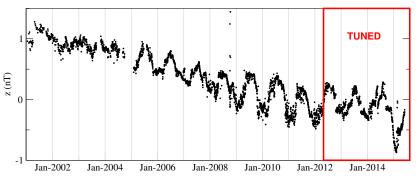
► development: Finalised (2013)

► documentation: Finalised (2014)

► start TRL: 1; achieved TRL: 9

► Daily calibration: Done (until August 2015)

Bowshock investigation:


► software tools preparation: Finalised (2013)

▶ theoretical and numerical model of the CSP: Obtained (2014)

► comparison with Cluster data: Done (2015)

Results: Daily calibration

Example: spacecraft z-offset for Cluster 1

- ▶ variation of less than 2 nT over the 15 years mission lifetime
- ▶ seasonal variations around 0.5 nT

Results: Bowshock investigation

- ▶ Theoretical investigation
 - ▶ new and better suited reference system for CSP evaluation
 - revised heating and acceleration mechanisms
- Numerical modelling
 - ▶ em1D Particle in Cell code optimised for 128 cores HPC Dell
 - model ran for various upstream conditions
- Model validation
 - ▶ model CSP compared with measured potential
 - electron heating and acceleration mechanisms validated

Contribution to STAR goals

- Increases the visibility of the participants in the scientific community
- ► Builds the expertise for future participation in hardware projects
- ► Strengthens the connection of the ISS with prestigious institutions
- ► Enhances the Romanian contribution to ESA
- ► Contributes to the identification of a research niche
- ► Helps the development of the national space research capacity
- ► Promotes the development of a highly qualified research team
- ► Enables high quality scientific results at international level

Contribution to ESA programmes

► Directly contributes to the ESA mission Cluster

Dissemination

- Cluster FGM daily calibration parameters database open to the Cluster principal investigators on the FTP server ftp.geophys.nat.tu-bs.de/clusterg_data
- ► TUNED helped the organisation of three FGM calibration workshops with international participation in Romania:
 - ► 17 23 March 2013
 - ► 14 21 May 2014
 - ► 14 18 September 2015
- Results of the TUNED project were presented at the Magnetometer Workshop, March 2014, Czech Republic
- Results of the bowshock investigation were published [Comişel et al, AnnGeo 2015]

Conclusions

- ► The TUNED project fulfilled all the proposed objectives
- ► TUNED brings a valuable contribution to the first ESA multi-spacecraft mission, Cluster
 - ► Calibration software package realised
 - ► Calibration done up to August 2015
- ► In depth bowshock investigation:
 - ▶ Theoretical study
 - Numerical model
 - ► Model validation through Cluster data comparison